Growth of Betti Numbers over Noetherian Local Rings.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HILBERT SCHEMES and MAXIMAL BETTI NUMBERS over VERONESE RINGS

We show that Macaulay’s Theorem, Gotzmann’s Persistence Theorem, and Green’s Theorem hold over a Veronese toric ring R. We also prove that the Hilbert scheme over R is connected; this is an analogue of Hartshorne’s theorem that the Hilbert scheme over a polynomial ring is connected. Furthermore, we prove that each lex ideal in R has the greatest Betti numbers among all graded ideals with the sa...

متن کامل

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

Growth of Graded Noetherian Rings

We show that every graded locally finite right noetherian algebra has sub-exponential growth. As a consequence, every noetherian algebra with exponential growth has no finite dimensional filtration which leads to a right (or left) noetherian associated graded algebra. We also prove that every connected graded right noetherian algebra with finite global dimension has finite GK-dimension. Using t...

متن کامل

Exponential Growth of Betti Numbers

We prove over some local commutative noetherian rings that the sequence of Betti numbers of every finitely generated module is either eventually constant or has termwise exponential growth.

متن کامل

Ore Extensions over near Pseudo-valuation Rings and Noetherian Rings

We recall that a ring R is called near pseudo-valuation ring if every minimal prime ideal is a strongly prime ideal. Let R be a commutative ring, σ an automorphism of R and δ a σderivation of R. We recall that a prime ideal P of R is δ-divided if it is comparable (under inclusion) to every σ-invariant and δ-invariant ideal I (i.e. σ(I) ⊆ I and δ(I) ⊆ I) of R. A ring R is called a δ-divided ring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 1994

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-12511